Stations on a Token-Ring LAN are logically organized in a ring topology with data being transmitted sequentially from one ring station to the next with a control token circulating around the ring controlling access. This token passing mechanism is shared by ARCNET, Token Bus, and FDDI, and has theoretical advantages over the stochastic CSMA/CD of Ethernet.
Token Ring networkPhysically, a Token-Ring network is wired as a star, with 'hubs' and arms out to each station and the loop going out-and-back through each. Cabling is generally IBM "Type-1" Shielded Twisted Pair, with unique hermaphroditic connectors.
Initially (in 1985) Token-Ring ran at 4 Mbit/s, but in 1989 IBM introduced the first 16 Mbit/s Token-Ring products and the 802.5 standard was extended to support this. In 1981, Apollo Computers introduced their proprietary 12 Mbit/s Apollo Token Ring (ATR) and Proteon introduced their 10 Mbit/s ProNet-10 Token Ring network. However, IBM Token-Ring was not compatible with ATR or ProNet-10.
More technically, Token-Ring is a local area network protocol which resides at the data link layer (DLL) of the OSI model. It uses a special three-byte frame called a token that travels around the ring. Token ring frames travel completely around the loop.
Each station passes or repeats the special token frame around the ring to its nearest downstream neighbour. This token-passing process is used to arbitrate access to the shared ring media. Stations that have data frames to transmit must first acquire the token before they can transmit them. Token ring LANs normally use differential Manchester encoding of bits on the LAN media.
Token ring was invented by Olof Söderblom in the late 1960s. It was later licensed to IBM, who popularized the use of token ring LANs in the mid 1980s when it released its IBM token ring architecture based on active multi-station access units (MSAUs or MAUs) and the IBM Structured Cabling System. The Institute of Electrical and Electronics Engineers (IEEE) later standardized a token ring LAN system as IEEE 802.5.[1]
Token ring LAN speeds of 4 Mbit/s, 16 Mbit/s, 100 Mbit/s and 1 Gbit/s have been standardized by the IEEE 802.5 working group.
Token ring networks had significantly superior performance and reliability compared to early shared-media implementations of Ethernet (IEEE 802.3), and were widely adopted as a higher-performance alternative to shared-media Ethernet.
However, with the development of switched Ethernet, token ring architectures lagged badly behind Ethernet in both performance and reliability. The higher sales of Ethernet allowed economies of scale which drove down prices further, and added a compelling price advantage to its other advantages over token ring.
Token ring networks have since declined in usage and the standards activity has since come to a standstill as switched Ethernet has dominated the LAN/layer 2 networking market.